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Modern approach for high-performance

Recipe to follow (targeting a contemporary cluster of multi-core
CPUs):

1. Make sure you’re using the correct algorithm (e.g.,
factorization instead of inverse, spatial data structures to find
neighbors, etc.).

2. Choose correct data structures to minimize time spent on
cache misses.

3. Accelerate number crunching (vectorization, etc.).

4. Implement shared-memory parallelization (threading) to use
all the cores of a node.

5. Implement distributed-memory parallelization (MPI) to use
multiple nodes.
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Multi-core architectures and programming models (0)

2003:

I Intel Gallatin architecture
1 core, 3.0 GHz, 8 KB L1, 512 KB L2, 4 MB L3

I MPI-only:
mpirun -np numNodes ./program
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Multi-core architectures and programming models (1)

2006:

I Intel Tulsa
2 cores, 3.0 GHz, 32 KB L1, 1 MB L2, 8 MB L3

I MPI-only:
mpirun -np 2*numNodes ./program

I MPI+threading (“hybrid”):
mpirun -np numNodes ./program -numThreads=2
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Multi-core architectures and programming models (2)

2014:

I Intel Ivy Bridge
8 cores, 2.0 GHz, 32 KB L1, 256 KB L2, 16 MB L3

I MPI-only:
mpirun -np 16*numNodes ./program

I MPI+threading (“hybrid”):
mpirun -np numNodes ./program -numThreads=16
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Domain decomposition example

I MPI-only results in more subdomain boundary,
communication, and synchronization.

I MPI-only requires that all cores support MPI processes.
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Many-core revolution (0)

Moore’s law ⇒ “what do we do with all these transistors?”

CPU strategy: make a single thread go faster

I 1982: instruction cache

I 1985: data cache

I 1989: pipeline

I 1993: superscalar

I 1995: out of order execution, branch prediction

I 1999: SIMD (vector) instructions

I 2002: hyperthreading

Then what? 2005 finally brings multi-core.

But what if instead we support many (>1000) simultaneous
(slower) threads? ⇒ the many-core revolution
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Many-core revolution (1)

Ivy Bridge

anantech.com

Kepler

pcper.com

Ivy Bridge Kepler

Die size 212 mm2 551 mm2

Transistors 1.16B 7.1B

Core count 4 2880
Caches big tiny

Specialty latency throughput
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Many-core revolution (2)

Key characteristics of GPUs:

I GPUs support thousands of simultaneously-executing threads.

I Cores are “simple” - no transistors are dedicated to branch
prediction, out of order execution, etc. Instead, more cores.

I Current GPUs can’t access CPU memory, have to ship data

I GPUs have expensive memory which provides 5-10X the
bandwidth to GPU memory as CPUs have to CPU memory.

I GPUs rely on parallelism instead of caches to hide memory
latency with fast context switching.

I To use a GPU effectively, you need at least O(10,000)
threads.

I Four of top 10 and 90 of top 500 use accelerators.

I Cores cannot run MPI processes.
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Many-core revolution (3)

Compute nodes will be heterogeneous in cores and memory:

DRAM

NVRAM

On-Package
Memory

Network-on-Chip

Core Core

External Network
Interface

...

Core Core...

Acc.
On-Package

Memory

External Interconnect

Node

NUMA Domain

NUMA Domain

Accelerator

The 20-year “just recompile” free ride is over.
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Targeting multiple architectures

Operating assumptions:

I Compute nodes have ˜50 complex cores, ˜5000 simple cores,
or any combination (heterogenous in cores and memory).

I Heterogenous-node programming on the node,
message-passing between nodes.

Problem: implementations may target particular architectures and
are not thread scalable.

(e.g., locks on CPU won’t scale to 100,000 threads on GPU)

Solutions:

I

I Write in language or with a library that runs on multiple
architectures (e.g., openmp, openacc, opencl, kokkos)
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Patterns, policies, and bodies

Example: parallel loops

for (size_t i = 0; i < N; ++i) {

const double x = someFunction(i, ...);

const double plasticUpdate = otherFunction(x, ... data ...);

plasticStrains[i] = (plasticUpdate > 0) ? ...

}

Terminology:

I Pattern: structure of user’s computations
for, reduction, scan, task-graph, ...

I Execution Policy: how computations are executed
static scheduling, dynamic, thread teams, ...

I Computational Body: logic which performs one of the
pieces of the work

The pattern and policy drive the computational body.

Pattern Policy

B
o
d
y
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Data parallel problems

Data parallel loop bodies are prime candidates for parallelization.

Test: do you get the same answer if loop is run backwards?

Examples:

I Forces in MD:

for (atom = 0; atom < numberOfAtoms; ++atom) {

atomForces[atom] = calculateForce (...);

}

I Thermodynamic quantities at quadrature points in FEA:

for (element = 0; element < numberOfElements; ++ element) {

total = 0;

for (qp = 0; qp < numberOfQuadraturePoints; ++qp) {

total += dot(left[element ][qp], right[element ][qp]);

}

elementValues[element] = total;

}
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Threading “Parallel for”

What if we want to thread the FEA problem?

#pragma omp parallel for

for (element = 0; element < numberOfElements; ++ element) {

total = 0;

for (qp = 0; qp < numberOfQuadraturePoints; ++qp) {

total += dot(left[element ][qp], right[element ][qp]);

}

elementValues[element] = total;

}

(This is a change in the policy from “serial” to “parallel.”)

Openmp is very effective at threading for multi-core CPUs, but
what if we then want to do this on a GPU too?
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“Parallel for” on a GPU: OpenMP 4.0

Option 1: OpenMP

,#pragma omp target data map (...)

,#pragma omp teams num_teams (...) num_threads (...) private (...)

,#pragma omp distribute

,for (element = 0; element < numberOfElements; ++ element) {

, total = 0

,#pragma omp parallel for

, for (qp = 0; qp < numberOfQuadraturePoints; ++qp) {

, for (i = 0; i < vectorSize; ++i) {

, total +=

, left[element*numberOfQuadraturePoints * vectorSize +

, qp * vectorSize +

, i] *

, right[element*numberOfQuadraturePoints * vectorSize +

, qp * vectorSize +

, i];

, }

, }

, elementValues[element] = total;

,}
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“Parallel for” on a GPU: OpenACC

Option 2: OpenACC

#pragma acc parallel copy (...) num_gangs (...) vector_length (...)

#pragma acc loop gang vector

for (element = 0; element < numberOfElements; ++ element) {

total = 0;

for (qp = 0; qp < numberOfQuadraturePoints; ++qp) {

for (i = 0; i < vectorSize; ++i) {

total +=

left[element * numberOfQuadraturePoints * vectorSize +

qp * vectorSize +

i] *

right[element * numberOfQuadraturePoints * vectorSize +

qp * vectorSize +

i];

}

}

elementValues[element] = total;

}



September 1-2, 2015 18/107

Problem: data layout

Data layout problem: CPU memory access pattern reduces GPU
performance by more than 10X.

#pragma something , opencl , etc.

for (element = 0; element < numberOfElements; ++ element) {

total = 0;

for (qp = 0; qp < numberOfQuadraturePoints; ++qp) {

for (i = 0; i < vectorSize; ++i) {

total +=

left[element * numberOfQuadraturePoints * vectorSize +

qp * vectorSize +

i] *

right[element * numberOfQuadraturePoints * vectorSize +

qp * vectorSize +

i];

}

}

elementValues[element] = total;

}

⇒ For performance, memory layouts must depend on architecture.
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Kokkos overview

How does Kokkos address these problems?

Kokkos is a user-accessible, portable, performant, shared-memory
programming environment.

I is a templated C++ library, not a new language.

I supports clear, concise, thread-scalable parallel patterns.

I lets you write algorithms once and run on many architectures
e.g. multi-core CPU, Nvidia GPGPU, Xeon Phi, ...

I minimizes the amount of architecture-specific
implementation details users must know.

I uses multi-dimensional arrays with architecture-dependent
layouts

i.e. it solves the data layout problem.
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Section Summary

I Contemporary compute nodes are heterogenous in cores and
memory.

I MPI-only is no longer possible because not all cores can run
MPI processes.

I We must now leverage heterogenous-node parallelism in
addition to MPI.

Coming up next:

I The Kokkos model and library allow you to run efficient code
on multiple architectures with minimal changes to switch.

I Kokkos provides thread-scalable parallel patterns and
execution policies for flexible algorithm expression.

I Kokkos solves the data layout problem with
multi-dimensional arrays tuned to the underlying memory
system.
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Using Kokkos for data parallel patterns (0)

Data parallel patterns and work

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex) {

atomForces[atomIndex] = calculateForce (... data ...);

}

I Kokkos maps “work” to cores, but what is “work?”

I Indices for the body to perform.

I Given a total number of iterations, Kokkos intelligently maps
indices to cores

So, what information must we provide to Kokkos?

Important concept: Work mapping

You give a computational body to Kokkos, Kokkos runs the body
across cores, giving it indices of work to perform.
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Using Kokkos for data parallel patterns (1)

What is a computational body?

User code (instructions), but in what form?

I Free function, like pthreads?

I Operator of a functor?

Defining the functor:

struct Body {

...

void operator ()( somehow , an index assignment) const {

}

...

};

Using the functor:

Body body;

Kokkos :: parallel_for(numberOfIterations , body);
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Using Kokkos for data parallel patterns (2)

Passing indices to bodies

Intel Threading Building Blocks’ approach:
struct Body {

...

void operator ()( const Range & range) const {

}

...

}

Problem: contiguous ranges are bad for GPUs.

Kokkos uses the simplest interface possible:
struct Body {

void operator ()( const size_t index) const {...}}

}

Warning: concurrency and order

No concurrency or order is guaranteed by the Kokkos runtime.
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Using Kokkos for data parallel patterns (3)

Passing data to bodies (functors)

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex) {

atomForces[atomIndex] = calculateForce(... data ...);

}

struct Body {

...

void operator ()( const size_t atomIndex) const {

atomForces[atomIndex] = calculateForce(... data ...);

}

...

}

How does the body access the data?

Important concept

The bodies (functors) must have access to all the data they need
through data members.
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Using Kokkos for data parallel patterns (4)

Manual serial execution policy:

Serial version:
for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex) {

atomForces[atomIndex] = calculateForce(data);

}

How would we reproduce serial execution with the functor?

struct Body {

ForceType _atomForces;

AtomDataType _atomData;

void operator ()( const size_t atomIndex) const {

_atomForces[atomIndex] = calculateForce(_atomData );

}

}

Body body(atomForces , data)

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex) {

body(atomIndex );

}
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Using Kokkos for data parallel patterns (5)

The complete picture (using functors):

Defining the functor (operator+data):

struct Body {

ForceType _atomForces;

AtomDataType _atomData;

Body(atomForces , data) :

_atomForces(atomForces) _atomData(data) {}

void operator ()( const size_t atomIndex) const {

_atomForces[atomIndex] = calculateForce(_atomData );

}

}

Using the functor:
Body body(atomForces , data);

Kokkos :: parallel_for(numberOfAtoms , body);
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Using Kokkos for data parallel patterns (6)

Lambdas

C++11 introduces support for anonymous functors.
(“lambdas,” “closures”)

atomForces already exists

data already exists

Kokkos :: parallel_for(numberOfAtoms ,

[=] (const size_t atomIndex) {

atomForces[atomIndex] = calculateForce(data);

});

Warning: Lambdas

Kokkos lambdas must capture variables by value

Note: lambdas are not magic, they are simply auto-generated
functors.
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atomForces[atomIndex] = calculateForce(data);

});

Warning: Lambdas

Kokkos lambdas must capture variables by value

Note: lambdas are not magic, they are simply auto-generated
functors.
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parallel for examples (0)

Example: Thermodynamic quantities at quadrature points:

double **left = ..., ** right = ..., *elementValues = ...;

#pragma omp parallel for

for (element = 0; element < numberOfElements; ++ element) {

double total = 0;

for (qp = 0; qp < numberOfQuadraturePoints; ++qp) {

total += dot(left[element ][qp], right[element ][qp]);

}

elementValues[element] = total;

}

double **left = ..., ** right = ..., *elementValues = ...;

parallel_for(numberOfElements ,

[=] (const size_t element) {

double total = 0;

for (qp = 0; qp < numberOfQuadraturePoints; ++qp) {

total += dot(left[element ][qp], right[element ][qp]);

}

elementValues[element] = total;

}
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parallel for examples (1)

Example: saxpy

double * x = new double[N]; // also y

#pragma omp parallel for

for (size_t i = 0; i < N; ++i) {

y[i] = a * x[i] + y[i];

}

double * x = new double[N]; // also y

parallel_for(N,

[=] (const size_t i) {

y[i] = a * x[i] + y[i];

});
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Scalar integration (0)

Riemann-sum-style numerical integration:

y =

∫ upper

lower
function(x) dx

wikipedia

double totalIntegral = 0;

for (size_t i = 0; i < numberOfIntervals; ++i) {

const double x =

lower + (i/numberOfIntervals) * (upper - lower );
const double thisIntervalsContribution = function(x);
totalIntegral += thisIntervalsContribution;

}

totalIntegral *= dx;

How would we parallelize it?

Pattern
Policy
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Scalar integration (1)

An (incorrect) attempt:

double totalIntegral = 0;

Kokkos :: parallel_for(numberOfIntervals ,

[=] (const size_t index) {

const double x =

lower + (index/numberOfIntervals) * (upper - lower );

totalIntegral += function(x);},

);

totalIntegral *= dx;

First problem: compiler error; cannot increment totalIntegral
(lambdas capture by value!)
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Scalar integration (2)

An (incorrect) solution to the (incorrect) attempt:

double totalIntegral = 0;

double * totalIntegralPointer = &totalIntegral;

Kokkos :: parallel_for(numberOfIntervals ,

[=] (const size_t index) {

const double x =

lower + (index/numberOfIntervals) * (upper - lower );

*totalIntegralPointer += function(x);},

);

totalIntegral *= dx;

Second problem: race condition

step thread 0 thread 1

0 load

1 increment load

2 write increment

3 write
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Scalar integration (3)

Root problem: we’re using the wrong pattern, for instead of
reduction

Important concept: Reduction

Reductions combine the results of a set of threads.

How would we do this with OpenMP?

double totalIntegral = 0;

#pragma omp parallel for reduction(+: totalIntegral)

for (size_t i = 0; i < numberOfIntervals; ++i) {

totalIntegral += ...

}
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Reduction examples (0)

Example: Scalar integration

double totalIntegral = 0;

#pragma omp parallel for reduction(+: totalIntegral)

for (size_t i = 0; i < numberOfIntervals; ++i) {

totalIntegral += function (...);

}

double totalIntegral = 0;

parallel_reduce(numberOfIntervals ,

[=] (const size_t i, double & valueToUpdate) {

valueToUpdate += function (...);

},

totalIntegral );
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Reduction examples (1)

Example: Maximum point norm

double maxPointNorm = 0;

#pragma omp parallel for reduction(max:maxPointNorm)

for (size_t i = 0; i < numberOfPoints; ++i) {

maxPointNorm = std::max(maxPointNorm , norm(points[i]));

}

double maxPointNorm = 0;

parallel_reduce(numberOfPoints ,

[=] (const size_t i, double & valueToUpdate) {

valueToUpdate = std::max(valueToUpdate , norm(points[i]));

},

maxPointNorm );
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Reduction syntax

Parallel reduce (using lambdas):

ReductionType reducedValue = 0;

Kokkos :: parallel_reduce(numberOfIterations ,

[=] (const size_t index ,

ReductionType & valueToUpdate) {

valueToUpdate = [operator -specific logic]

},

reducedValue );

Limitation: the reduced value starts at 0 and is combined with
operator+.

For anything else, you need to use a general reduction functor.
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General reductions (0)

How do you do reductions on arbitrary types?

Example: finding center of mass of particles

Point centerOfMass = {{0., 0., 0.}};

for (size_t i = 0; i < numberOfPoints; ++i) {

centerOfMass += points[i];

}

centerOfMass /= numberOfPoints;
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General reductions (1)

OpenMP 3.1: Not supported

OpenMP 4.0: Hypothetically supported

#pragma omp declare reduction (+ : Point : \

for (int i = 0; i < 3; ++i) { omp_out[i] += omp_in[i];}) \

[for (int i = 0; i < 3; ++i) { omp_orig[i] = 0;}]

Point centerOfMass = {{0., 0., 0.}};

#pragma omp parallel for reduction (+: centerOfMass)

for (size_t i = 0; i < numberOfPoints; ++i) {

centerOfMass += points[i];

}

centerOfMass /= numberOfPoints;
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General reductions (2)

You don’t have to use the reduction clause:

Manual reductions:

double partialIntegrals[numberOfThreads]

#pragma omp parallel

{

const unsigned int threadIndex = omp_get_thread_num ();

#pragma omp for

for (size_t i = 0; i < numberOfIntervals; ++i) {

partialIntegrals[threadIndex] += ...;

}

}

double totalIntegral = sum of partialIntegrals;

totalIntegral *= dx;

Problem: false sharing
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General reductions (3)

Correct (CPU) manual reductions:

double totalIntegral = 0;

#pragma omp parallel

{

double localIntegral = 0;

#pragma omp for

for (size_t i = 0; i < numberOfIntervals; ++i) {

localIntegral += ...;

}

#pragma omp critical [well , atomic is better here]

totalIntegral += localIntegral;

}

totalIntegral *= dx;

We shouldn’t be thinking about this.
GPU? Xeon Phi?

Parallel programming environments should support robust,
arbitrary, performant reductions tuned to the architecture.
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General reductions (3)

Correct (CPU) manual reductions:

double totalIntegral = 0;

#pragma omp parallel

{

double localIntegral = 0;

#pragma omp for

for (size_t i = 0; i < numberOfIntervals; ++i) {

localIntegral += ...;

}

#pragma omp critical [well , atomic is better here]

totalIntegral += localIntegral;
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totalIntegral *= dx;

We shouldn’t be thinking about this.
GPU? Xeon Phi?

Parallel programming environments should support robust,
arbitrary, performant reductions tuned to the architecture.
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General reductions (4)

General reductions:

What information must we provide to do a reduction?

I The type of the value to reduce (“value type”)

I How to combine (“join”) two value types

I How to initialize a value type

struct Body {

typedef double value_type;

void operator ()( const size_t index ,

value_type & valueToUpdate) const {...}

void join(volatile value_type & destination ,

const volatile value_type & source) const {...}

void init(value_type & initialValue) const {...}

}
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Execution spaces

Execution spaces

How do I control where parallel kernels are run?
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Execution spaces (0)

Thought experiment: Consider this kernel execution:

MPI_Reduce (...);

FILE * file = fopen (...);

runANormalFunction (... data ...);

Kokkos :: parallel_for(numberOfSomethings ,

[=] (const size_t somethingIndex) {

const double y = ...;

// do something interesting

}

);

I Where will section 1 be run? CPU? GPU? Xeon Phi?

I Where will section 2 be run? CPU? GPU? Xeon Phi?

I In general, how do I control where code is executed?

⇒ Execution spaces

se
ct
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Execution spaces (1)

Execution space: logical grouping of identical computational units

DRAM

NVRAM

On-Package
Memory

Network-on-Chip

Core Core

External Network
Interface

...

Core Core...

Acc.
On-Package

Memory

External Interconnect

Node

NUMA Domain

NUMA Domain

Accelerator

Execution spaces:
Serial, Threads, OpenMP, Cuda, ... more to come



September 1-2, 2015 45/107

Execution spaces (2)

MPI_Reduce (...);

FILE * file = fopen (...);

runANormalFunction (... data ...);

Kokkos :: parallel_for(numberOfSomethings ,

[=] (const size_t somethingIndex) {

const double y = ...;

// do something interesting

}

);

I Where will Host be run? CPU? GPU? Xeon Phi?
The host process

I Where will Parallel be run? CPU? GPU? Xeon Phi?
The default execution space

I In general, how do I control where Parallel is executed?
Changing the default execution space (compilation), or

specifying an execution space in the policy.
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Execution spaces (3)

Changing the parallel execution space:

parallel_for(

numberOfIntervals ,

[=] (const size_t i) {

...

});

parallel_for(

RangePolicy <Execut ionSpace >(0, numberOfIntervals),

[=] (const size_t i) {

...

});

Details necessary to enable different execution spaces:
I Kokkos must be compiled with the execution spaces enabled.

I Kokkos must be initialized and finalized within programs.

I Kernels (and called functions) must be marked with a macro.

I Lambdas must be marked with a macro.
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Execution spaces (4)

Initializing and finalizing Kokkos:

int main(int argc , char** argv) {

...

Kokkos :: initialize(argc , argv);

...

Kokkos :: finalize ();

return 0;

}

Command-line arguments:

--kokkos-threads=INT
total number of threads

(or threads within NUMA region)

--kokkos-numa=INT number of NUMA regions

--kokkos-device=INT device (GPU) id to use
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Execution spaces (5)

Kokkos portability macros:

KOKKOS LAMBDA annotates lambdas:

Kokkos :: parallel_for(numberOfIterations ,

KOKKOS_LAMBDA (const size_t index) {...});

KOKKOS INLINE FUNCTION annotates functions:

KOKKOS_INLINE_FUNCTION

double helperFunction(const size_t s) {...}

struct Body {

...

KOKKOS_INLINE_FUNCTION

void operator ()( const size_t index) const {

...

helperFunction(index);

}

}
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Exercise: scalar integration (0)

Task: Implement scalar integration using Kokkos.

Details:

I All files are contained in Examples/ScalarIntegration.

I ScalarIntegration.cc contains all testing and timing logic.

I ScalarIntegration.cc calls functions defined in
Version Serial.cc and Version Kokkos.cc.

I Only Version Kokkos.h needs modification.

I Compile with make, run with ./ScalarIntegration,
generate plot with gnuplot makePlot.gnuplot.
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Exercise: scalar integration (1)

Results:
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Exercise: finding nearest point (0)

Task: Finding the index of a point in a set that is closest to a
search location

Details:

I All files are contained in Examples/NearestPoint.

I NearestPoint.cc contains all testing and timing logic.

I NearestPoint.cc calls functions defined in
Version Serial.cc and Version Kokkos.cc.

I Only Version kokkos.h needs modification.

I Compile with make, run with ./NearestPoint, generate plot
with gnuplot makePlot.gnuplot.

I Hint: You’ll have to pass the points to the functor as data.
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Exercise: finding nearest point (1)

Results:
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Advanced features

I Kokkos supports (exclusive and inclusive) prefix scans:

Thread value 1 2 3 4 5 6

Exclusive scan 0 1 3 6 10 15

Inclusive scan 1 3 6 10 15 21

Key idea: it’s simply a change in the pattern.

Body body (...);

parallel_scan(RangePolicy <Space >(0, N), body);

I Hierarchical parallelism through team policies (later).

I Task-DAG functionality under development.

I Concurrently executing parallel kernels on host and device.
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Section Summary

I Simple use is similar to openmp, but advanced flexibility is
available

I Three common data-parallel patterns are parallel for,
parallel reduce, and parallel scan.

I A parallel dispatch is characterized by its pattern, policy, and
body.

I User computational bodies are provided as functors or
lambdas, which handle a single item of the work.

I Heterogenous nodes have one or more execution spaces.

I You control in which execution space parallel code is run by a
template parameter on the policy or by changes in
compilation.
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Views

Learning objectives:

I Motivation behind the View abstraction.

I Key View concepts and and template parameters.

I The View life cycle.
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Memory space concerns

Why couldn’t we run NearestPoint on the GPU?

Version kokkos.h:

struct Body {

const Point * _points;

void operator ()( const size_t pointIndex ,

value_type & valueToUpdate) const {

const Point & thisPoint = _points[pointIndex ];

...

}

...

};

Problem: points (data and the pointer) reside in CPU memory.

We need a way of storing data (multidimensional arrays) which can
be communicated to coprocessors.

⇒ Views
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Views (0)

High-level usage of Views in NearestPoints:

struct Body {

const View <...> _points;

Body(const View <...> points) _points(points) {...}

void operator ()( const size_t pointIndex ,

value_type & valueToUpdate) const {

... _points(pointIndex , coordinate )...

}

};

View <...> points (...);

... populate points ...

Body body(points );

parallel_reduce(N, body);
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Views (1)

View overview:

I Multi-dimensional arrays of 0 or more dimensions
scalar (0), vector (1), matrix (2), etc.

I Arrays are rectangular, not ragged.

I Number of dimensions (rank) is fixed at compile-time.
e.g., scalar, vector, matrix, etc.

I Sizes of dimensions set at compile-time or runtime.
e.g., 2x20, 50x50, etc.

Example:

View <double ***> data(‘‘label’’, N0, N1, N2); 3 run, 0 compile

View <double **[N2]> data(‘‘label’’, N0 , N1); 2 run, 1 compile

View <double *[N1][N2]> data(‘‘label ’’, N0); 1 run, 2 compile

View <double[N0][N1][N2]> data(‘‘label’’); 0 run, 3 compile

Note: runtime-sized dimensions must come first.
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Views (2)

View life cycle:

I Allocations only happen when explicitly specified.
i.e., there are no hidden allocations.

I Copy construction and assignment are shallow (like pointers).
so, you pass Views by value, not by reference

I Reference counting is used for automatic deallocation.

Example:
void assignValueInView(View <double*, ...> data) {

data (0) = 3;

}

View <double*, ...> a(‘‘a’’, N0), b(‘‘b’’, N0);

a(0) = 1;

b(0) = 2;

a = b;

View <double*, ...> c(b);

assignValueInView(c);

print a(0)

What does this snippet print?
3.0
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Views (3)

Example: summing an array:

View <double*> data(‘‘data’’, size);

for (size_t i = 0; i < size; ++i) {

data(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce(

RangePolicy <ExecutionSpace >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += data(index );

},

sum);

Question: Where is the data stored? GPU memory? CPU
memory? Both?

⇒ Memory Spaces
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Memory spaces

Learning objectives:

I Node memory heterogeneity and the memory space
abstraction.

I How to control where data is stored via the MemorySpace

template parameter.

I How to avoid illegal memory access to views in different
memory spaces.

I Understand motivation behind, design of, and use of mirroring.
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Memory spaces (0)

Memory space: how would you define this, Carter?

DRAM

NVRAM

On-Package
Memory

Network-on-Chip

Core Core

External Network
Interface

...

Core Core...

Acc.
On-Package

Memory

External Interconnect

Node

NUMA Domain

NUMA Domain

Accelerator
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Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

I View<double***, [Memory] Space> data(...);

I Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more

I Each execution space has a default memory space, which is
used if you pass the execution space

I If no Space is provided, the view is made in the default
memory space of the default execution space.
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Memory spaces (2)

Example: HostSpace

View <double**, HostSpace> hostView (...);

Example: CudaSpace

View <double**, CudaSpace> view (...);
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Memory spaces (3)

Example (redux): summing an array with the GPU

(failed) Attempt 1:

View <double*, CudaSpace> data(‘‘data’’, size);

for (size_t i = 0; i < size; ++i) {

data(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce(

RangePolicy <Cuda >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += data(index );

},

sum);
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Memory spaces (4)

Example (redux): summing an array with the GPU

(failed) Attempt 2:

View <double*, HostSpace> data(‘‘data’’, size);

for (size_t i = 0; i < size; ++i) {

data(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce(

RangePolicy <Cuda >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += data(index );

},

sum);

What’s the solution?
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Mirrors (0)

Important concept: Mirrors

Mirrors are views into (conceptually) the same data, from different
execution spaces.

Common pattern:

1. Allocate a view.

2. Make a host mirror of the view, hostView.

3. Populate hostView on the host (from file, etc.).

4. Deep copy contents of hostView to view.

5. Launch a kernel processing with the view.

6. If needed, deep copy the (updated) contents of view back to
the hostView and use them (write file, etc.).
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Mirrors (1)

Mirroring schematic

typedef Kokkos ::View <double**, Device > DeviceViewType;

DeviceViewType deviceView (...);

DeviceViewType ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i e w (deviceView );
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Mirror syntax

Syntax:

typedef Kokkos ::View <double*, Device > DeviceViewType;

DeviceViewType deviceView (...);

DeviceViewType ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i e w (deviceView );

populate hostView somehow

Kokkos :: deep copy (deviceView , hostView );

Kokkos :: parallel_for(

RangePolicy <Device >(0, size),

KOKKOS_LAMBDA (...) { use and change deviceView });

Kokkos :: deep copy (hostView , deviceView );

post -process hostView somehow
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A closer look at mirrors

typedef Kokkos ::View <double*, Device > DeviceViewType;

DeviceViewType deviceView(‘‘test’’, 10);

DeviceViewType ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i e w (deviceView );

hostView (0) = 3.14;

Kokkos :: parallel_for(

RangePolicy <Device >(0, 1),

KOKKOS_LAMBDA (const size_t index) { print deviceView (0) });

Experiment: What is printed if Device is Cuda? OpenMP?

Mirror details:
I create mirror view does not allocate unless necessary to go

across memory spaces, otherwise it’s a reference.

I create mirror always allocates, even in the same space.

I Kokkos never performs a hidden deep copy.
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Exercise: finding nearest point with views (0)

Task: Revisit NearestPoint and plot Cuda speedup using views.

Details:

I Modify your previous work in Examples/NearestPoint.

I Main logic of the KokkosFunctor

struct KokkosFunctor {

PointViewType _points;

SearchLocationViewType _searchLocation;

KokkosFunctor(Point* points , Point searchLocation) :

_points (...), _searchLocation (...) {

// create a host mirror of _points

// populate points_host

// deep_copy(_points , points_host );

// do the same for the search location

}

operator ()( size_t * result) const {

parallel_reduce (...);

}
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Exercise: finding nearest point with views (1)

Results:
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Caching and coalescing

Learning objectives:

I Thread (in)dependence on CPU and GPU architectures.

I The need for coalesced memory access on the GPU.

I How memory access patterns relate to Kokkos mapping
parallel indices to computational bodies.

I How the Layout template parameter is used to achieve good
memory performance on different architectures.

I See a concrete example of the performance of various memory
configurations.
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Caching and coalescing (0)

Consider the array summation example:

View <double*, Device > data(‘‘data’’, size);

... populate data ...

double sum = 0;

Kokkos :: parallel_reduce(

RangePolicy <Device >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += data(index );

},

sum);

Given N threads, which indices do we want thread 0 to handle?

Chunked:
0, 1, 2, ..., N/P

Strided:
0, N/P, 2*N/P, ...

CPU GPU

Why?
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Caching and coalescing (1)

Thread independence:

operator ()( const size_t index , double & valueToUpdate) {

const double d = _data(index );

valueToUpdate += d;

}

I CPU threads are independent.
i.e., threads may execute at any rate.

I GPU threads are synchronized in groups (of 32).
i.e., threads in groups must execute instructions together.

In particular all threads in a group (warp) must finished their loads

const double d = _data(index );

before any thread can move on.

How many cache lines must be fetched before threads can move
on?
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Caching and coalescing (2)

CPUs: few (independent) cores with separate caches:

GPUs: many (synchronized) cores with a shared cache:
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Caching and coalescing (3)

Important point

For performance, accesses to views in HostSpace must be cached,
while access to views in CudaSpace must be coalesced.

Caching: if thread t’s current access is at position i,
thread t’s next access should be at position i+1.

Coalescing: if thread t’s current access is at position i,
thread t+1’s current access should be at position i+1.

Warning

Uncoalesced access in CudaSpace greatly reduces performance
(more than 10X)

Note: uncoalesced read-only access in CudaSpace is okay through
Kokkos const views (more later).
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Caching and coalescing (4)

Iterating for the execution space:

operator ()( const size_t index , double & valueToUpdate) {

const double d = _data(index );

valueToUpdate += d;

}

As users we don’t control how indices are mapped to threads, so
how do we achieve good memory access?

Important point

Kokkos maps indices to cores in contiguous chunks on CPU
execution spaces, and strided for Cuda.
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As users we don’t control how indices are mapped to threads, so
how do we achieve good memory access?

Important point

Kokkos maps indices to cores in contiguous chunks on CPU
execution spaces, and strided for Cuda.



September 1-2, 2015 79/107

Example: array of dot products (0)

Let’s simplify the thermodynamic quantities at quadrature points
in FEA algorithm into an array of dot products:
Kokkos :: parallel_for(

RangePolicy <ExecutionSpace >(0, numberOfDots),

KOKKOS_LAMBDA (const size_t dotIndex) {

total = 0;

for (i = 0; i < vectorSize; ++i) {

total += left(dotIndex , i) * right(dotIndex , i);

}

dotProducts(dotIndex) = total; });

How do we represent left and right?
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in FEA algorithm into an array of dot products:
Kokkos :: parallel_for(

RangePolicy <ExecutionSpace >(0, numberOfDots),

KOKKOS_LAMBDA (const size_t dotIndex) {
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Example: array of dot products (1)

Attempt 0: 1D array, row-major

View <double*, ExecutionSpace > left(numberOfDots*vectorSize );

View <double*, ExecutionSpace > dotProducts(numberOfDots );

parallel_for(RangePolicy <ExecutionSpace >(0, numberOfDots),

...

total +=

left (dotIndex * vectorSize + i) *

right(dotIndex * vectorSize + i);

I HostSpace: cached (good)

I CudaSpace: uncoalesced (bad)
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Attempt 0: 1D array, row-major

View <double*, ExecutionSpace > left(numberOfDots*vectorSize );

View <double*, ExecutionSpace > dotProducts(numberOfDots );

parallel_for(RangePolicy <ExecutionSpace >(0, numberOfDots),
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Example: array of dot products (2)

Attempt 1: 1D array, col-major

View <double*, ExecutionSpace > left(numberOfDots*vectorSize );

View <double*, ExecutionSpace > dotProducts(numberOfDots );

parallel_for(RangePolicy <ExecutionSpace >(0, numberOfDots),

...

total +=

left (i * numberOfDots + dotIndex) *

right(i * numberOfDots + dotIndex );

I HostSpace: uncached (bad)

I CudaSpace: coalesced (good)



September 1-2, 2015 82/107

Layouts

Can we obtain good memory access on both architectures?

Yes, by making memory layout depend on the architecture.

Important concept: Layouts

Every View has a Layout set at compile-time.

View <double ***, Layout , Space > name (...);

I Most-common layouts are LayoutLeft and LayoutRight.
LayoutLeft: left-most index is stride 1.
LayoutRight: right-most index is stride 1.

I If no layout specified, default for that memory space is used.
LayoutLeft for CudaSpace, LayoutRight for HostSpace.

I Advanced layouts: LayoutTiled, ...more to come
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Layouts

Can we obtain good memory access on both architectures?

Yes, by making memory layout depend on the architecture.

Important concept: Layouts

Every View has a Layout set at compile-time.

View <double ***, Layout , Space > name (...);

I Most-common layouts are LayoutLeft and LayoutRight.
LayoutLeft: left-most index is stride 1.
LayoutRight: right-most index is stride 1.

I If no layout specified, default for that memory space is used.
LayoutLeft for CudaSpace, LayoutRight for HostSpace.

I Advanced layouts: LayoutTiled, ...more to come
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Example: array of dot products (3)

Attempt 2: 2D array, architecture-dependent layout

View <double**, ExecutionSpace > left(numberOfDots*vectorSize );

View <double**, ExecutionSpace > dotProducts(numberOfDots );

parallel_for(RangePolicy <ExecutionSpace >(0, numberOfDots),

... total += left (dotIndex , i) *

right(dotIndex , i);

(a) HostSpace (b) CudaSpace

I HostSpace: cached (good)

I CudaSpace: coalesced (good)
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Exercise: array of dot products

Task: Implement the array of dot products using Kokkos.
do we want them to do this exercise before showing results? it
would be only the largest number of dot products we’re
considering.

Details:

I All files are contained in Examples/ArrayOfDotProducts.

I ArrayOfDotProducts.cc contains all testing and timing
logic.

I ArrayOfDotProducts.cc calls functions defined in
Version Serial.cc and Version Kokkos.cc.

I Only Version Kokkos.h needs modification.

I Compile with make, run with ./ArrayOfDotProducts,
generate plot with gnuplot makePlot.gnuplot.
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Example: array of dot products (4)

Layout performance
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dot product size [-]
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Speedup over serial: Array of 4 Million Dot Products

kokkos cuda left
kokkos cuda right
kokkos omp right
kokkos omp left
omp
cuda

coalesced

cached

uncached

uncoalesced
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Example: array of dot products (5)

How long of a computation are we considering?

log10(number of dot products) [-]
3.03.54.04.55.05.56.06.57.0

dot product size [-]
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(a) Serial
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(b) OpenMP
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(c) Cuda

Note: serial is
faster in this corner.
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Example: array of dot products (5)

How much do OpenMP and Cuda improve performance?

Speedup over serial:

log10(number of dot products) [-]
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(a) OpenMP

log10(number of dot products) [-]
3.03.54.04.55.05.56.06.57.0

dot product size [-]
01020304050

sp
e
e
d
u
p

0

2

4

6

8

10

12

14

speedup of
cuda
over
serial

(b) Cuda
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Example: array of dot products (6)

How well does Kokkos perform relative to native?

Speedup of native over Kokkos:

log10(number of dot products) [-]
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(a) OpenMP
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(b) Cuda
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Example: array of dot products (7)

How much does layout matter?

Speedup of correct over incorrect layout:

log10(number of dot products) [-]
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(a) OpenMP
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(b) Cuda
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Example:
contractDataFieldScalar

Learning objectives:

I How to design array shapes such that switching between
Layouts on different architectures gives optimal performance.

I How to choose between different parallelization approaches.

I Need for and use of multi-dimensional range policies.
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Example: contractDataFieldScalar (1)

One slice of contractDataFieldScalar:

for (qp = 0; qp < numberOfQPs; ++qp) {

total = 0;

for (i = 0; i < vectorSize; ++i) {

total += left(qp , i) * right(i);

}

result(qp) = total;

}
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Example: contractDataFieldScalar (2)

contractDataFieldScalar:

for (element = 0; element < numberOfElements; ++ element) {

for (qp = 0; qp < numberOfQPs; ++qp) {

total = 0;

for (i = 0; i < vectorSize; ++i) {

total += left(element , qp , i) * right(element , i);

}

result(element , qp) = total;

}

}
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Example: contractDataFieldScalar (3)

Parallelization approaches:

I Each thread handles an element.
Threads: numberOfElements

I Each thread handles a qp.
Threads: numberOfElements * numberOfQPs

I Each thread handles an i.
Threads: numElements * numQPs * vectorSize

Requires coordination.
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Example: contractDataFieldScalar (3)

Parallelization approaches:

I Each thread handles an element.
Threads: numberOfElements

I Each thread handles a qp.
Threads: numberOfElements * numberOfQPs

I Each thread handles an i.
Threads: numElements * numQPs * vectorSize

Requires coordination.
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Example: contractDataFieldScalar (4)

parallel_for(numberOfElements * numberOfQPs ,

KOKKOS_LAMBDA (const size_t index) {

(element , qp) = d o T h r e a d i n g P o l i c y (index);
total = 0;

for (i = 0; i < vectorSize; ++i) {

total += left(element , qp , i) * right(element , i);

}

result(element , qp) = total;

});

Two design questions to answer:

I Threading policy:
i.e., how map index to work (element, qp)?

I left array shape:
i.e., left(element, qp, i) or

left(qp, i, element) or
left(qp, element, i) or ...
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Example: contractDataFieldScalar (4)
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total = 0;

for (i = 0; i < vectorSize; ++i) {
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}

result(element , qp) = total;

});

Two design questions to answer:
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Example: contractDataFieldScalar (5)

Attempt 0:

I Threading policy:

element = index / numberOfQPs;

qp = index % numberOfQPs;

I left array shape:

left(element , qp, i)

Analysis:

I CPU with LayoutRight: cached

I GPU with LayoutLeft : uncoalesced



September 1-2, 2015 95/107

Example: contractDataFieldScalar (5)

Attempt 0:

I Threading policy:

element = index / numberOfQPs;

qp = index % numberOfQPs;

I left array shape:

left(element , qp, i)

Analysis:

I CPU with LayoutRight: cached

I GPU with LayoutLeft : uncoalesced
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Example: contractDataFieldScalar (6)

Attempt 1:

I Threading policy:

element = index / numberOfQPs;

qp = index % numberOfQPs;

I left array shape:

left(qp , element , i)

Analysis:

I CPU with LayoutRight: (mostly) cached

I GPU with LayoutLeft : coalesced

Solution? Multi-dimensional range policies with layouts.
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Attempt 1:

I Threading policy:

element = index / numberOfQPs;

qp = index % numberOfQPs;

I left array shape:

left(qp , element , i)

Analysis:

I CPU with LayoutRight: (mostly) cached
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Example: contractDataFieldScalar (6)

Attempt 1:

I Threading policy:

element = index / numberOfQPs;

qp = index % numberOfQPs;

I left array shape:

left(qp , element , i)

Analysis:

I CPU with LayoutRight: (mostly) cached

I GPU with LayoutLeft : coalesced

Solution? Multi-dimensional range policies with layouts.
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Multi-dimensional range policies

parallel_for(

RangePolicy <Layout , Space , 2>(numElements , numQPs),

KOKKOS_LAMBDA (const array <size_t , 2> indices) {

element = indices [0];

qp = indices [1];

total = 0;

for (i = 0; i < vectorSize; ++i) {

total += left(element , qp , i) * right(element , i);

}

result(element , qp) = total;

});

LayoutRight: element = index / numberOfQPs;

qp = index % numberOfQPs;

LayoutLeft: element = index % numberOfElements;

qp = index / numberOfElements;
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Multi-dimensional range policies

parallel_for(

RangePolicy <Layout , Space , 2>(numElements , numQPs),

KOKKOS_LAMBDA (const array <size_t , 2> indices) {

element = indices [0];

qp = indices [1];

total = 0;

for (i = 0; i < vectorSize; ++i) {

total += left(element , qp , i) * right(element , i);

}

result(element , qp) = total;

});

LayoutRight: element = index / numberOfQPs;

qp = index % numberOfQPs;

LayoutLeft: element = index % numberOfElements;

qp = index / numberOfElements;
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Example: contractDataFieldScalar (7)

Attempt 2:

View <double ***, Layout , Space > left;

View <double**, Layout , Space > right;

View <double**, Layout , Space > result;

parallel_for(

RangePolicy < Layout , Space , 2>(numElements , numQPs),

KOKKOS_LAMBDA (const array <size_t , 2> indices) {

element = indices [0];

qp = indices [1];

total = 0;

for (i = 0; i < vectorSize; ++i) {

total += left(element , qp , i) * right(element , i);

}

result(element , qp) = total;

});

Analysis:
I CPU with LayoutRight: cached

I GPU with LayoutLeft : coalesced
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Example: contractDataFieldScalar (7)

Attempt 2:

View <double ***, Layout , Space > left;

View <double**, Layout , Space > right;

View <double**, Layout , Space > result;

parallel_for(

RangePolicy < Layout , Space , 2>(numElements , numQPs),

KOKKOS_LAMBDA (const array <size_t , 2> indices) {

element = indices [0];

qp = indices [1];

total = 0;

for (i = 0; i < vectorSize; ++i) {

total += left(element , qp , i) * right(element , i);

}

result(element , qp) = total;

});

Analysis:
I CPU with LayoutRight: cached

I GPU with LayoutLeft : coalesced
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MemoryTraits

textures are neat
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Exercise: MD force kernel (0)

Task: Implement a Lennard-Jones MD force kernel using Kokkos.

Details:

I All files are contained in Examples/MDForceKernel.

I MDForceKernel.cc contains all testing and timing logic.

I MDForceKernel.cc calls functions defined in
Version Serial.cc and Version Kokkos.cc.

I Only Version Kokkos.h needs modification.

I Compile with make, run with ./MDForceKernel, generate
plot with gnuplot makePlot.gnuplot.
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Exercise: MD force kernel (1)

Results:
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Speedup over serial: 1 Million Atoms

kokkos cuda left tex
kokkos cuda left
kokkos cuda right
kokkos omp right
kokkos omp left
omp
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Example: MD force kernel (5)

How long of a computation are we considering?

log10(number of atoms) [-]
3.03.54.04.55.05.56.0
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(a) Serial

log10(number of atoms) [-]
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(b) OpenMP

log10(number of dot products) [-]
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(c) Cuda
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Example: MD force kernel (5)

How much do OpenMP and Cuda improve performance?

Speedup over serial:

log10(number of atoms) [-]
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(a) OpenMP
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Example: MD force kernel (6)

How well does Kokkos perform relative to native?

Speedup of native over Kokkos:

log10(number of atoms) [-]
3.03.54.04.55.05.56.0

number of neighbors [-]
102030405060708090

sp
e
e
d
u
p

0.95

1.00

1.05

1.10

speedup of
omp
over

kokkos omp right

(a) OpenMP
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(b) no vanilla cuda yet
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Example: MD force kernel (7)

How much does layout matter?

Speedup of correct over incorrect layout:

log10(number of atoms) [-]
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(a) OpenMP
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(b) Cuda
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Example: MD force kernel (8)

How much does RandomAccess matter?

Speedup of RandomAccess over correct layout:
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(a) no openmp yet, though it’ll do

nothing
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(b) Cuda
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std::vector (0)

Thought experiment: saxpy with std::vector

vector <double > x(N), y(N);

#pragma omp parallel for

for (size_t i = 0; i < N; ++i) {

y[i] = a * x[i] + y[i];

}

What happens?


